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ABSTRACT
Over the past several decades, the Internet infrastructure has
evolved in many ways and one notable trend is encrypted
transport which renders conventional traffic classification
methods increasingly less effective. In this position paper,
we point out that existing classifiers for encrypted network
traffic are suffering from crucial problems associated with
inadequate efficiency for real-life deployment and low model
transferability. We propose potential research directions to
address these challenges by reducing the feature space re-
quired for such classifiers and exploiting robust network-level
features across multiple datasets across time and space.

1 Introduction
Network traffic classification is a common network manage-
ment task that involves inferring Internet services and appli-
cations. Efficiently and accurately classifying network traffic
allows network operators to perform a wide range of essential
network operations, including capacity and resource planning,
quality of service (QoS) monitoring, traffic prioritization, ma-
licious traffic detection, etc [4, 18, 32, 34, 37–40]. Conven-
tional approaches to traffic classification often rely on net-
work features handcrafted from expert knowledge [29,35,42].
More recent efforts have applied machine learning (ML) to
perform classification, using both classical-learning-based
[7, 11, 13, 19, 21, 22, 31] and deep-learning-based methods
[2, 9, 12, 23, 25, 33, 36, 41, 44, 46, 48]. These methods have
generally performed well when applied to curated datasets
and evaluated in specific contexts—moreover, they have fre-
quently depended on domain-specific features, including IP
addresses and information that is available in unencrypted
packet payloads.

However, the rise of encrypted network traffic [5, 10, 14,
16, 20, 27, 28, 30, 45] now threaten the effectiveness of long-
established network traffic classification methods. In this
position paper, we examine the challenges associated with de-
signing traffic classifiers that are robust and efficient against
pervasive encryption of the application and transport layers.
To that end, we also suggest several possible research direc-
tions to tackle these challenges.

2 Why are current encrypted traffic classifiers
not enough?

Existing classifiers experience inadequate efficiency due
to the lack of attention to feature space. Increasing utiliza-
tion of different network traffic encryption schemes alter the
feature space of ML-based traffic classifiers by (1) reducing
the usefulness of affected features or (2) shifting the feature
importance distribution, and the majority of the existing clas-
sifiers attempt to address these issues by relying on complex
deep-learning based models to avoid manually articulating
informative features [9, 12, 19, 23, 36, 41, 48]. Unlike tradi-
tional methods that are heuristics-based [1, 29, 35, 42, 47] or
classical machine-learning based [6,7,7,19,21,22] which usu-
ally depend on a few pre-selected components of the traffic
flows, these deep-learning models often learn representations
of the traffic from lengthy network traffic inputs, such as the
entirety of the packet headers, to make traffic classification
decisions accurately. Unfortunately, in a real-world deploy-
ment setting such as for an Internet Service Provider (ISP),
capturing and storing large portions of the traffic flows on a
large scale can introduce high overheads in terms of system
costs (e.g., storage requirements, computation overhead, etc.).
Moreover, it is crucial for network operators to make classifi-
cation decisions quickly so that appropriate follow-up actions
can be taken and considering a broad set of network traffic
features can slowdown the inference speed of such classifiers
which further reduces their efficiency.

Classifiers evaluated using closed-world datasets do not
guarantee model transferability. While most existing clas-
sifiers designed for encrypted network traffic show promising
results when evaluated with closed-world datasets, such clas-
sifiers often fail to remain robust when given newer network
traffic received at a different time or location, due to the het-
erogeneity and evolvement of network infrastructure (e.g.,
installations of new equipment, software upgrades, pattern
changes in user behaviors, different service providers). To
illustrate this issue, we conducted a sample study to collect
TLS encrypted traffic across a wide range of applications at
two different locations and times (two years apart), and split



the collected traffic into two different datasets (old and new)
accordingly. Our study shows that while we can train simple
ML-based traffic classifiers to perform well (with a F1 Score
of 99%) on application classification using traces in the old
dataset, the performance of such classifiers degrades severely
(with a F1 Score of 49%) when applied directly to the new
dataset, even though both datasets contain traffic from the
same set of applications. More generally speaking, while
many existing encrypted traffic classifiers are evaluated using
well-known datasets such as ISCX VPN-NonVPN [15] and
UNIBS-2009 [17], these classifiers are not robust when trans-
ferring to new datasets or environments because closed-world
datasets are not necessarily sufficient to describe what the
most up-to-date Internet traffic actually looks like.

3 What are some plausible research direc-
tions?

Utilize interpretable models to reduce feature space to
improve efficiency. While deep-learning-based approaches
seem to be the mainstream approach for designing classifiers
for encrypted network traffic, we found that we can utilize
non-black box models (classical machine-learning methods
like Decision Trees) or interpretable machine learning tech-
niques (e.g., permutation based importance [3], SHAP val-
ues [24]) to reduce the number of features to consider while
obtaining reasonably good classification results. Reducing the
feature space while maintaining the classification accuracy
can effectively lower the relevant system cost for classifier
implementers, because they need to preserve less traffic in-
formation. A plausible way to reduce the feature space is to
rank network-level features according to the feature impor-
tance as interpreted by the models and neglect features that
are less informative (or have negative impacts on classifier
performance). Evaluated using prominent datasets, includ-
ing the QUIC dataset [43], the ISCX VPN-NonVPN traffic
dataset [15], and our collected TLS encrypted traffic flows
(which include video streaming [8], video conferencing [26],
and social media applications), our results show that we can
arrive at relatively similar performance when providing the
models with just the top few features (e.g. packet header
fields) compared to all features. At the same time, we observe
a reduction in inference time needed to arrive at classification
decisions as fewer features (i.e. fewer matrix multiplications)
are being considered.

Perform statistical analysis on multiple datasets to locate
features robust to improve model transferability. While
training and evaluating models based on a single closed-world
dataset can lead to classifiers that are not robust in terms of
model transferability, we can try to identify features that
remain consistently robust across datasets and exploit these
features when designing classifiers. Here we define a set
of features to be robust when models trained and validated
using this set of features can achieve similar performance
when tested on a new dataset that it has never seen before.
One reasonable way to obtain this set of features is through

statistical analysis/comparison across datasets and finding
network-level features with relatively consistent values and
distributions (for each predicting application/service) across
the datasets. Providing the models with this set of robust
features allows us to avoid context-specific features that are
over-fitted to a particular dataset which can be easily rendered
ineffective when given new instances of traffic generated in
different network environments.

4 Conclusion
Although the topic of encrypted traffic classification has been
extensively studied, we point out that there exists room for im-
provement as existing classifiers lack efficiency for practical
deployment and experience low model transferability. Based
on the above-mentioned observations, we present an opportu-
nity for the network research community to re-examine this
critically important application, to develop new methods for
traffic classification that are robust in the face of encryption,
and more accurate and efficient on modern network traffic.
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